From 1 - 10 / 11
  • This dataset contains modelling output from the u-ab326 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • The SLIMCAT Reference Atmosphere for UTLS-Ozone was a set of example output from the SLIMCAT three-dimensional chemical transport model (CTM). It includes three-dimensional global fields of chemical (and sometimes meteorological) variables as computed for twelve dates in 1997, near the middle of each month. This data set includes 12 files, each of them corresponding to one output time near the middle of each month of Year 1997 (12 Jan, 11 Feb, 13 Mar, 12 Apr, 12 May, 11 Jun, 11 Jul, 10 Aug, 19 Sept, 19 Oct, 18 Nov, 18 Dec). Each file contains the calculated 3-D distribution of 37 chemical species or families and 6 meteorological variables. The model used is the SLIMCAT chemistry transport model (CTM). The model was run from October 1991 and forced by the UK Met Office analyses. The model used 18 isentropic levels. The vertical coordinate in the data files is the globally averaged altitude. The real lat/lon-dependent altitude is given in the ALT field recorded in the files. The THETA field gives the real model theta levels (which are constant with latitude/longitude). Data from Martyn Chipperfield, University of Leeds. NERC Research Programme UTLS-Ozone (Upper Troposphere and Lower Stratosphere) and National Centre for Earth Observation (NCEO). A newer version 2 dataset was produced in 2009 that supersedes this dataset.

  • The SLIMCAT Reference Atmosphere for UTLS-Ozone was a set of example output from the SLIMCAT three-dimensional chemical transport model (CTM). It includes three-dimensional global fields of chemical (and sometimes meteorological) variables as computed for twelve dates in 1997, near the middle of each month. This data set includes 12 files, each of them corresponding to one output time near the middle of each month of Year 1997 (12 Jan, 11 Feb, 13 Mar, 12 Apr, 12 May, 11 Jun, 11 Jul, 10 Aug, 19 Sept, 19 Oct, 18 Nov, 18 Dec). Each file contains the calculated 3-D distribution of 37 chemical species or families and 6 meteorological variables. The model used is the SLIMCAT chemistry transport model (CTM). The model was run from October 1991 and forced by the UK Met Office analyses. The model used 18 isentropic levels. The vertical coordinate in the data files is the globally averaged altitude. The real lat/lon-dependent altitude is given in the ALT field recorded in the files. The THETA field gives the real model theta levels (which are constant with latitude/longitude). Data from Martyn Chipperfield, University of Leeds. NERC Research Programme UTLS-Ozone (Upper Troposphere and Lower Stratosphere) and National Centre for Earth Observation (NCEO).

  • The SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) Reference Atmosphere for UTLS-Ozone was a set of example output from the SLIMCAT three-dimensional chemical transport model (CTM). It includes three-dimensional global fields of chemical (and sometimes meteorological) variables as computed for twelve dates in 1997, near the middle of each month. This data set includes 12 files, each of them corresponding to one output time near the middle of each month of Year 1997 (12 Jan, 11 Feb, 13 Mar, 12 Apr, 12 May, 11 Jun, 11 Jul, 10 Aug, 19 Sept, 19 Oct, 18 Nov, 18 Dec). Each file contains the calculated 3-D distribution of 37 chemical species or families and 6 meteorological variables. The model used is the SLIMCAT chemistry transport model (CTM). The model was run from October 1991 and forced by the UK Met Office analyses. The model used 18 isentropic levels. The vertical coordinate in the data files is the globally averaged altitude. The real lat/lon-dependent altitude is given in the ALT field recorded in the files. The THETA field gives the real model theta levels (which are constant with latitude/longitude). Data from Martyn Chipperfield, University of Leeds. NERC Research Programme UTLS-Ozone (Upper Troposphere and Lower Stratosphere) and National Centre for Earth Observation (NCEO).

  • This dataset contains modelling output from the u-ag706 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-af015 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ag477 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ab978 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ae766 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • The Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) project provides information on the connection between the composition and the distribution of biomass burning outflow, ozone production and loss within the outflow, and the resulting perturbation to oxidant chemistry in the troposphere. The BORTAS team sampled biomass burning outflow over the North Atlantic in summer 2011 the using Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. The data were then used to describe the observed chemistry within plumes and to quantify the impact of boreal fires on the North Atlantic region using a nested 3-D chemistry transport model. This dataset contains atmospheric aircraft and model data. Science Objectives of BORTAS: -Sample biomass burning outflow from boreal North America over the western boundary of the North Atlantic during summer 2011 using the FAAM BAe146 aircraft; -Describe observed chemistry within plumes by using the measurements to constrain the Master Chemical Mechanism (MCM), with particular attention to the NOy and organic chemistry; -Derive a reduced chemical mechanism suitable for a global Chemical Transport Model (CTM) that accurately describes chemistry within the plumes; -Quantify the impact of boreal forest fires on oxidant chemistry over the temperate and subtropical Atlantic using a nested 3-D chemistry transport model, driven by a subset of MCM chemistry and by assimilated field measurements; and -Detect, validate and quantify the impact of boreal biomass burning on global tropospheric composition using data from space-borne sensors. The FAAM airborne sampling element of the BORTAS project took place in July and August 2011.